
1

Tutorial: XML programming in Java

Doug Tidwell
Cyber Evangelist, developerWorks XML Team
September 1999

About this tutorial
Our first tutorial, “Introduction to XML,” discussed the basics of XML and demonstrated its potential to
revolutionize the Web. This tutorial shows you how to use an XML parser and other tools to create,
process, and manipulate XML documents. Best of all, every tool discussed here is freely available at
IBM’s alphaWorks site (www.alphaworks.ibm.com) and other places on the Web.

About the author
Doug Tidwell is a Senior Programmer at IBM. He has well over a seventh of a century of programming
experience and has been working with XML-like applications for several years. His job as a Cyber
Evangelist is basically to look busy, and to help customers evaluate and implement XML technology.
Using a specially designed pair of zircon-encrusted tweezers, he holds a Masters Degree in Computer
Science from Vanderbilt University and a Bachelors Degree in English from the University of Georgia.

http://www-4.ibm.com/software/developer/education/xmlintro/
http://www.alphaworks.ibm.com/
http://www.alphaworks.ibm.com/

Section 1 – Introduction Tutorial – XML Programming in Java

2

Section 1 – Introduction

About this tutorial

Our previous tutorial discussed the basics of XML
and demonstrated its potential to revolutionize the
Web. In this tutorial, we’ll discuss how to use an
XML parser to:

• Process an XML document
• Create an XML document
• Manipulate an XML document

We’ll also talk about some useful, lesser-known
features of XML parsers. Best of all, every tool
discussed here is freely available at IBM’s
alphaWorks site (www.alphaworks.ibm.com) and
other places on the Web.

What’s not here

There are several important programming topics
not discussed here:

• Using visual tools to build XML applications
• Transforming an XML document from one

vocabulary to another
• Creating interfaces for end users or other

processes, and creating interfaces to back-end
data stores

All of these topics are important when you’re
building an XML application. We’re working on
new tutorials that will give these subjects their due,
so watch this space!

XML application architecture

An XML application is typically built around an XML
parser. It has an interface to its users, and an
interface to some sort of back-end data store.

This tutorial focuses on writing Java code that uses
an XML parser to manipulate XML documents. In
the beautiful picture on the left, this tutorial is
focused on the middle box.

XML
Application

XML Parser

User
Interface

Data
Store

(Original artwork drawn by Doug Tidwell. All rights reserved.)

http://www-4.ibm.com/software/developer/education/xmlintro/
http://www.alphaworks.ibm.com/
http://www.alphaworks.ibm.com/
http://www.alphaworks.ibm.com/

Tutorial – XML Programming in Java Section 2 – Parser basics

3

Section 2 – Parser basics

The basics

An XML parser is a piece of code that reads a
document and analyzes its structure. In this
section, we’ll discuss how to use an XML parser to
read an XML document. We’ll also discuss the
different types of parsers and when you might want
to use them.

Later sections of the tutorial will discuss what you’ll
get back from the parser and how to use those
results.

How to use a parser

We’ll talk about this in more detail in the following
sections, but in general, here’s how you use a
parser:

1. Create a parser object
2. Pass your XML document to the parser
3. Process the results

Building an XML application is obviously more
involved than this, but this is the typical flow of an
XML application.

Kinds of parsers

There are several different ways to categorize
parsers:

• Validating versus non-validating parsers
• Parsers that support the Document Object

Model (DOM)
• Parsers that support the Simple API for XML

(SAX)
• Parsers written in a particular language (Java,

C++, Perl, etc.)

Section 2 – Parser basics Tutorial – XML Programming in Java

4

Validating versus non-validating parsers

As we mentioned in our first tutorial, XML
documents that use a DTD and follow the rules
defined in that DTD are called valid documents.
XML documents that follow the basic tagging rules
are called well-formed documents.

The XML specification requires all parsers to report
errors when they find that a document is not well-
formed. Validation, however, is a different issue.
Validating parsers validate XML documents as they
parse them. Non-validating parsers ignore any
validation errors. In other words, if an XML
document is well-formed, a non-validating parser
doesn’t care if the document follows the rules
specified in its DTD (if any).

Why use a non-validating parser?

Speed and efficiency. It takes a significant amount
of effort for an XML parser to process a DTD and
make sure that every element in an XML document
follows the rules of the DTD. If you’re sure that an
XML document is valid (maybe it was generated by
a trusted source), there’s no point in validating it
again.

Also, there may be times when all you care about is
finding the XML tags in a document. Once you
have the tags, you can extract the data from them
and process it in some way. If that’s all you need
to do, a non-validating parser is the right choice.

The Document Object Model (DOM)

The Document Object Model is an official
recommendation of the World Wide Web
Consortium (W3C). It defines an interface that
enables programs to access and update the style,
structure, and contents of XML documents. XML
parsers that support the DOM implement that
interface.

The first version of the specification, DOM Level 1,
is available at http://www.w3.org/TR/REC-DOM-
Level-1, if you enjoy reading that kind of thing.

http://www.w3.org/TR/REC-DOM-Level-1
http://www.w3.org/TR/REC-DOM-Level-1

Tutorial – XML Programming in Java Section 2 – Parser basics

5

What you get from a DOM parser

When you parse an XML document with a DOM
parser, you get back a tree structure that contains
all of the elements of your document. The DOM
provides a variety of functions you can use to
examine the contents and structure of the
document.

A word about standards

Now that we’re getting into developing XML
applications, we might as well mention the XML
specification. Officially, XML is a trademark of MIT
and a product of the World Wide Web Consortium
(W3C).

The XML Specification, an official recommendation
of the W3C, is available at www.w3.org/TR/REC-
xml for your reading pleasure. The W3C site
contains specifications for XML, DOM, and literally
dozens of other XML-related standards. The XML
zone at developerWorks has an overview of these
standards, complete with links to the actual
specifications.

The Simple API for XML (SAX)

The SAX API is an alternate way of working with
the contents of XML documents. A de facto
standard, it was developed by David Megginson
and other members of the XML-Dev mailing list.

To see the complete SAX standard, check out
www.megginson.com/SAX/. To subscribe to the
XML-Dev mailing list, send a message to
majordomo@ic.ac.uk containing the following:
subscribe xml-dev.

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
http://www2.software.ibm.com/developer/standards.nsf/xml-describing-byname
http://www2.software.ibm.com/developer/standards.nsf/xml-describing-byname
http://www2.software.ibm.com/developer/standards.nsf/xml-describing-byname
http://www.megginson.com/SAX/
mailto:majordomo@ic.ac.uk

Section 2 – Parser basics Tutorial – XML Programming in Java

6

What you get from a SAX parser

When you parse an XML document with a SAX
parser, the parser generates events at various
points in your document. It’s up to you to decide
what to do with each of those events.

A SAX parser generates events at the start and
end of a document, at the start and end of an
element, when it finds characters inside an
element, and at several other points. You write the
Java code that handles each event, and you decide
what to do with the information you get from the
parser.

Why use SAX? Why use DOM?

We’ll talk about this in more detail later, but in
general, you should use a DOM parser when:

• You need to know a lot about the structure of a
document

• You need to move parts of the document
around (you might want to sort certain
elements, for example)

• You need to use the information in the
document more than once

Use a SAX parser if you only need to extract a few
elements from an XML document. SAX parsers
are also appropriate if you don’t have much
memory to work with, or if you’re only going to use
the information in the document once (as opposed
to parsing the information once, then using it many
times later).

Tutorial – XML Programming in Java Section 2 – Parser basics

7

XML parsers in different languages

XML parsers and libraries exist for most languages
used on the Web, including Java, C++, Perl, and
Python. The next panel has links to XML parsers
from IBM and other vendors.

Most of the examples in this tutorial deal with IBM’s
XML4J parser. All of the code we’ll discuss in this
tutorial uses standard interfaces. In the final
section of this tutorial, though, we’ll show you how
easy it is to write code that uses another parser.

Resources – XML parsers

Java
• IBM’s parser, XML4J, is available at

www.alphaWorks.ibm.com/tech/xml4j.
• James Clark’s parser, XP, is available at

www.jclark.com/xml/xp.
• Sun’s XML parser can be downloaded from

developer.java.sun.com/developer/products/xml/
(you must be a member of the Java Developer
Connection to download)

• DataChannel’s XJParser is available at
xdev.datachannel.com/downloads/xjparser/.

C++
• IBM’s XML4C parser is available at

www.alphaWorks.ibm.com/tech/xml4c.
• James Clark’s C++ parser, expat, is available

at www.jclark.com/xml/expat.html.

Perl
• There are several XML parsers for Perl. For

more information, see
www.perlxml.com/faq/perl-xml-faq.html.

Python
• For information on parsing XML documents in

Python, see www.python.org/topics/xml/.

http://www.alphaworks.ibm.com/tech/xml4j
http://www.jclark.com/xml/xp
http://developer.java.sun.com/developer/products/xml/
http://xdev.datachannel.com/downloads/xjparser/
http://www.alphaworks.ibm.com/tech/xml4c
http://www.jclark.com/xml/expat.html
http://www.perlxml.com/faq/perl-xml-faq.html
http://www.python.org/topics/xml/

Section 2 – Parser basics Tutorial – XML Programming in Java

8

One more thing

While we’re talking about resources, there’s one
more thing: the best book on XML and Java (in our
humble opinion, anyway).

We highly recommend XML and Java: Developing
Web Applications, written by Hiroshi Maruyama,
Kent Tamura, and Naohiko Uramoto, the three
original authors of IBM’s XML4J parser. Published
by Addison-Wesley, it’s available at bookpool.com
or your local bookseller.

Summary

The heart of any XML application is an XML parser.
To process an XML document, your application will
create a parser object, pass it an XML document,
then process the results that come back from the
parser object.

We’ve discussed the different kinds of XML
parsers, and why you might want to use each one.
We categorized parsers in several ways:

• Validating versus non-validating parsers
• Parsers that support the Document Object

Model (DOM)
• Parsers that support the Simple API for XML

(SAX)
• Parsers written in a particular language (Java,

C++, Perl, etc.)

In our next section, we’ll talk about DOM parsers
and how to use them.

http://www.bookpool.com/.x/ecssib6yb8/sm/0201485435
http://www.bookpool.com/.x/ecssib6yb8/sm/0201485435
http://www.bookpool.com/.x/ecssib6yb8/sm/0201485435

Tutorial – XML Programming in Java Section 3 – The Document Object Model (DOM)

9

Section 3 – The Document Object Model (DOM)

����Dom, dom, dom, dom, dom,����
Doobie-doobie, ����

����Dom, dom, dom, dom, dom…

The DOM is a common interface for manipulating
document structures. One of its design goals is
that Java code written for one DOM-compliant
parser should run on any other DOM-compliant
parser without changes. (We’ll demonstrate this
later.)

As we mentioned earlier, a DOM parser returns a
tree structure that represents your entire document.

Sample code

Before we go any further, make sure you’ve
downloaded our sample XML applications onto
your machine. Unzip the file xmljava.zip, and
you’re ready to go! (Be sure to remember where
you put the file.)

DOM interfaces

The DOM defines several Java interfaces. Here
are the most common:

• Node: The base datatype of the DOM.
• Element: The vast majority of the objects

you’ll deal with are Elements.
• Attr: Represents an attribute of an element.
• Text: The actual content of an Element or

Attr.
• Document: Represents the entire XML

document. A Document object is often
referred to as a DOM tree.

Section 3 – The Document Object Model (DOM) Tutorial – XML Programming in Java

10

Common DOM methods

When you’re working with the DOM, there are
several methods you’ll use often:

• Document.getDocumentElement()
Returns the root element of the document.

• Node.getFirstChild() and
Node.getLastChild()
Returns the first or last child of a given Node.

• Node.getNextSibling() and
Node.getPreviousSibling()
Deletes everything in the DOM tree, reformats
your hard disk, and sends an obscene e-mail
greeting to everyone in your address book.
(Not really. These methods return the next or
previous sibling of a given Node.)

• Node.getAttribute(attrName)
For a given Node, returns the attribute with the
requested name. For example, if you want the
Attr object for the attribute named id, use
getAttribute("id").

<?xml version="1.0"?>
<sonnet type="Shakespearean">
<author>

<last-name>Shakespeare</last-name>
<first-name>William</first-name>
<nationality>British</nationality>
<year-of-birth>1564</year-of-birth>
<year-of-death>1616</year-of-death>

</author>
<title>Sonnet 130</title>
<lines>

<line>My mistress’ eyes are ...

Our first DOM application!

We’ve been at this a while, so let’s go ahead and
actually do something. Our first application simply
reads an XML document and writes the document’s
contents to standard output.

At a command prompt, run this command:

java domOne sonnet.xml

This loads our application and tells it to parse the
file sonnet.xml. If everything goes well, you’ll
see the contents of the XML document written out
to standard output.

The domOne.java source code is on page 33.

Tutorial – XML Programming in Java Section 3 – The Document Object Model (DOM)

11

public class domOne
{

public void parseAndPrint(String uri)
...
public void printDOMTree(Node node)
...
public static void main(String argv[])
...

domOne to Watch Over Me

The source code for domOne is pretty
straightforward. We create a new class called
domOne; that class has two methods,
parseAndPrint and printDOMTree.

In the main method, we process the command line,
create a domOne object, and pass the file name to
the domOne object. The domOne object creates a
parser object, parses the document, then
processes the DOM tree (aka the Document
object) via the printDOMTree method.

We’ll go over each of these steps in detail.

public static void main(String argv[])
{

if (argv.length == 0)
{

System.out.println("Usage: ... ");
...
System.exit(1);

}

domOne d1 = new domOne();
d1.parseAndPrint(argv[0]);

}

Process the command line

The code to process the command line is on the
left. We check to see if the user entered anything
on the command line. If not, we print a usage note
and exit; otherwise, we assume the first thing on
the command line (argv[0], in Java syntax) is the
name of the document. We ignore anything else
the user might have entered on the command line.

We’re using command line options here to simplify
our examples. In most cases, an XML application
would be built with servlets, Java Beans, and other
types of components; and command line options
wouldn’t be an issue.

public static void main(String argv[])
{

if (argv.length == 0)
{

System.out.println("Usage: ... ");
...
System.exit(1);

}

domOne d1 = new domOne();
d1.parseAndPrint(argv[0]);

}

Create a domOne object

In our sample code, we create a separate class
called domOne. To parse the file and print the
results, we create a new instance of the domOne
class, then tell our newly-created domOne object to
parse and print the XML document.

Why do we do this? Because we want to use a
recursive function to go through the DOM tree and
print out the results. We can’t do this easily in a
static method such as main, so we created a
separate class to handle it for us.

Section 3 – The Document Object Model (DOM) Tutorial – XML Programming in Java

12

try
{

DOMParser parser = new DOMParser();
parser.parse(uri);
doc = parser.getDocument();

}

Create a parser object

Now that we’ve asked our instance of domOne to
parse and process our XML document, its first
order of business is to create a new Parser
object. In this case, we’re using a DOMParser
object, a Java class that implements the DOM
interfaces. There are other parser objects in the
XML4J package, such as SAXParser,
ValidatingSAXParser, and
NonValidatingDOMParser.

Notice that we put this code inside a try block.
The parser throws an exception under a number of
circumstances, including an invalid URI, a DTD that
can’t be found, or an XML document that isn’t valid
or well-formed. To handle this gracefully, we’ll
need to catch the exception.

try
{

DOMParser parser = new DOMParser();
parser.parse(uri);
doc = parser.getDocument();

}
...
if (doc != null)

printDOMTree(doc);

Parse the XML document

Parsing the document is done with a single line of
code. When the parse is done, we get the
Document object created by the parser.

If the Document object is not null (it will be null
if something went wrong during parsing), we pass it
to the printDOMTree method.

public void printDOMTree(Node node)
{

int nodeType = Node.getNodeType();
switch (nodeType)
{

case DOCUMENT_NODE:
printDOMTree(((Document)node).

GetDocumentElement());
...

case ELEMENT_NODE:
...
NodeList children =

node.getChildNodes();
if (children != null)
{

for (int i = 0;
i < children.getLength();
i++)

printDOMTree(children.item(i);
}

Process the DOM tree

Now that parsing is done, we’ll go through the DOM
tree. Notice that this code is recursive. For each
node, we process the node itself, then we call the
printDOMTree function recursively for each of the
node’s children. The recursive calls are shown at
left.

Keep in mind that while some XML documents are
very large, they don’t tend to have many levels of
tags. An XML document for the Manhattan phone
book, for example, might have a million entries, but
the tags probably wouldn’t go more than a few
layers deep. For this reason, stack overflow isn’t a
concern, as it is with other recursive algorithms.

Tutorial – XML Programming in Java Section 3 – The Document Object Model (DOM)

13

Document Statistics for sonnet.xml:
====================================
Document Nodes: 1
Element Nodes: 23
Entity Reference Nodes: 0
CDATA Sections: 0
Text Nodes: 45
Processing Instructions: 0

Total: 69 Nodes

Nodes a-plenty

If you look at sonnet.xml, there are twenty-four
tags. You might think that would translate to
twenty-four nodes. However, that’s not the case.
There are actually 69 nodes in sonnet.xml; one
document node, 23 element nodes, and 45 text
nodes. We ran java domCounter sonnet.xml
to get the results shown on the left.

The domCounter.java source code is on page
35.

<?xml version="1.0"?>
<!DOCTYPE sonnet SYSTEM "sonnet.dtd">
<sonnet type="Shakespearean">
<author>

<last-name>Shakespeare</last-name>

Sample node listing

For the fragment on the left, here are the nodes
returned by the parser:

1. The Document node
2. The Element node corresponding to the

<sonnet> tag
3. A Text node containing the carriage return at

the end of the <sonnet> tag and the two
spaces in front of the <author> tag

4. The Element node corresponding to the
<author> tag

5. A Text node containing the carriage return at
the end of the <author> tag and the four
spaces in front of the <last-name> tag

6. The Element node corresponding to the
<last-name> tag

7. A Text node containing the characters
“Shakespeare”

If you look at all the blank spaces between tags,
you can see why we get so many more nodes than
you might expect.

Section 3 – The Document Object Model (DOM) Tutorial – XML Programming in Java

14

<sonnet type="Shakespearean">
<author>

<last-name>Shakespeare</last-name>
<first-name>William</first-name>
<nationality>British</nationality>
<year-of-birth>1564</year-of-birth>
<year-of-death>1616</year-of-death>

</author>
<title>Sonnet 130</title>
<lines>

<line>My mistress' eyes are nothing
like the sun,</line>

All those text nodes

If you go through a detailed listing of all the nodes
returned by the parser, you’ll find that a lot of them
are pretty useless. All of the blank spaces at the
start of the lines at the left are Text nodes that
contain ignorable whitespace characters.

Notice that we wouldn’t get these useless nodes if
we had run all the tags together in a single line.
We added the line breaks and spaces to our
example to make it easier to read.

If human readability isn’t necessary when you’re
building an XML document, leave out the line
breaks and spaces. That makes your document
smaller, and the machine processing your
document doesn’t have to build all those useless
nodes.

switch (nodeType)
{

case Node.DOCUMENT_NODE:
...
case Node.ELEMENT_NODE:
...
case Node.TEXT_NODE:
...

}

Know your Nodes

The final point we’ll make is that in working with the
Nodes in the DOM tree, we have to check the type
of each Node before we work with it. Certain
methods, such as getAttributes, return null
for some node types. If you don’t check the node
type, you’ll get unexpected results (at best) and
exceptions (at worst).

The switch statement shown here is common in
code that uses a DOM parser.

Tutorial – XML Programming in Java Section 3 – The Document Object Model (DOM)

15

Summary

Believe it or not, that’s about all you need to know
to work with DOM objects. Our domOne code did
several things:

• Created a Parser object
• Gave the Parser an XML document to parse
• Took the Document object from the Parser

and examined it

In the final section of this tutorial, we’ll discuss how
to build a DOM tree without an XML source file,
and show you how to sort elements in an XML
document. Those topics build on the basics we’ve
covered here.

Before we move on to those advanced topics, we’ll
take a closer look at the SAX API. We’ll go through
a set of examples similar to the ones in this section,
illustrating the differences between SAX and DOM.

Section 4 – The Simple API for XML (SAX) Tutorial – XML Programming in Java

16

Section 4 – The Simple API for XML (SAX)

The Simple API for XML

SAX is an event-driven API for parsing XML
documents. In our DOM parsing examples, we
sent the XML document to the parser, the parser
processed the complete document, then we got a
Document object representing our document.

In the SAX model, we send our XML document to
the parser, and the parser notifies us when certain
events happen. It’s up to us to decide what we
want to do with those events; if we ignore them, the
information in the event is discarded.

Sample code

Before we go any further, make sure you’ve
downloaded our sample XML applications onto
your machine. Unzip the file xmljava.zip, and
you’re ready to go! (Be sure to remember where
you put the file.)

SAX events

The SAX API defines a number of events. You can
write Java code that handles all of the events you
care about. If you don’t care about a certain type of
event, you don’t have to write any code at all. Just
ignore the event, and the parser will discard it.

Tutorial – XML Programming in Java Section 4 – The Simple API for XML (SAX)

17

A wee listing of SAX events

We’ll list most of the SAX events here and on the
next panel. All of the events on this panel are
commonly used; the events on the next panel are
more esoteric. They’re part of the HandlerBase
class in the org.xml.sax package.

• startDocument
Signals the start of the document.

• endDocument
Signals the end of the document.

• startElement
Signals the start of an element. The parser
fires this event when all of the contents of the
opening tag have been processed. That
includes the name of the tag and any attributes
it might have.

• endElement
Signals the end of an element.

• characters
Contains character data, similar to a DOM
Text node.

More SAX events

Here are some other SAX events:

• ignorableWhitespace
This event is analogous to the useless DOM
nodes we discussed earlier. One benefit of this
event is that it’s different from the character
event; if you don’t care about whitespace, you
can ignore all whitespace nodes by ignoring
this event.

• warning, error, and fatalError
These three events indicate parsing errors.
You can respond to them as you wish.

• setDocumentLocator
The parser sends you this event to allow you to
store a SAX Locator object. The Locator
object can be used to find out exactly where in
the document an event occurred.

Section 4 – The Simple API for XML (SAX) Tutorial – XML Programming in Java

18

A note about SAX interfaces

The SAX API actually defines four interfaces for
handling events: EntityHandler, DTDHandler,
DocumentHandler, and ErrorHandler. All of
these interfaces are implemented by
HandlerBase.

Most of the time, your Java code will extend the
HandlerBase class. If you want to subdivide the
functions of your code (maybe you’ve got a great
DTDHandler class already written), you can
implement the xxxHandler classes individually.

<?xml version="1.0"?>
<sonnet type="Shakespearean">
<author>

<last-name>Shakespeare</last-name>
<first-name>William</first-name>
<nationality>British</nationality>
<year-of-birth>1564</year-of-birth>
<year-of-death>1616</year-of-death>

</author>
<title>Sonnet 130</title>
<lines>

<line>My mistress’ eyes are ...

Our first SAX application!

Let’s run our first SAX application. This application
is similar to domOne, except it uses the SAX API
instead of DOM.

At a command prompt, run this command:

java saxOne sonnet.xml

This loads our application and tells it to parse the
file sonnet.xml. If everything goes well, you’ll
see the contents of the XML document written out
to the console.

The saxOne.java source code is on page 37.

public class saxOne
extends HandlerBase

...
public void startDocument()
...
public void

startElement(String name,
AttributeList attrs)

...
public void

characters(char ch[], int start,
int length)

saxOne overview

The structure of saxOne is different from domOne
in several important ways. First of all, saxOne
extends the HandlerBase class.

Secondly, saxOne has a number of methods, each
of which corresponds to a particular SAX event.
This simplifies our code because each type of
event is completely handled by each method.

Tutorial – XML Programming in Java Section 4 – The Simple API for XML (SAX)

19

public void startDocument()
...
public void startElement(String name,

AttributeList attrs)
...
public void characters(char ch[],

int start, int length)
...
public void ignorableWhitespace(char ch[],

int start, int length)
...
public void endElement(String name)
...
public void endDocument()
...
public void warning(SAXParseException ex)
...
public void error(SAXParseException ex)
...
public void fatalError(SAXParseException

ex)
throws SAXException

...

SAX method signatures

When you’re extending the various SAX methods
that handle SAX events, you need to use the
correct method signature. Here are the signatures
for the most common methods:

• startDocument() and endDocument()
These methods have no arguments.

• startElement(String name,
AttributeList attrs)
name is the name of the element that just
started, and attrs contains all of the
element’s attributes.

• endElement(String name)
name is the name of the element that just
ended.

• characters(char ch[], int start,
int length)
ch is an array of characters, start is the
position in the array of the first character in this
event, and length is the number of characters
for this event.

public static void main(String argv[])
{

if (argv.length == 0)
{

System.out.println("Usage: ...");
...
System.exit(1);

}

saxOne s1 = new saxOne();
s1.parseURI(argv[0]);

}

Process the command line

As in domOne, we check to see if the user entered
anything on the command line. If not, we print a
usage note and exit; otherwise, we assume the first
thing on the command line is the name of the XML
document. We ignore anything else the user might
have entered on the command line.

public static void main(String argv[])
{

if (argv.length == 0)
{

System.out.println("Usage: ...");
...
System.exit(1);

}

saxOne s1 = new saxOne();
s1.parseURI(argv[0]);

}

Create a saxOne object

In our sample code, we create a separate class
called saxOne. The main procedure creates an
instance of this class and uses it to parse our XML
document. Because saxOne extends the
HandlerBase class, we can use saxOne as an
event handler for a SAX parser.

Section 4 – The Simple API for XML (SAX) Tutorial – XML Programming in Java

20

SAXParser parser = new SAXParser();
parser.setDocumentHandler(this);
parser.setErrorHandler(this);

try
{

parser.parse(uri);
}

Create a Parser object

Now that we’ve asked our instance of saxOne to
parse and process our XML document, it first
creates a new Parser object. In this sample, we
use the SAXParser class instead of DOMParser.

Notice that we call two more methods,
setDocumentHandler and setErrorHandler,
before we attempt to parse our document. These
functions tell our newly-created SAXParser to use
saxOne to handle events.

SAXParser parser = new SAXParser();
parser.setDocumentHandler(this);
parser.setErrorHandler(this);

try
{

parser.parse(uri);
}

Parse the XML document

Once our SAXParser object is set up, it takes a
single line of code to process our document. As
with domOne, we put the parse statement inside a
try block so we can catch any errors that occur.

public void startDocument()
...
public void startElement(String name,

AttributeList attrs)
...
public void characters(char ch[],

int start, int length)
...
public void ignorableWhitespace(char ch[],

int start, int length)
...

Process SAX events

As the SAXParser object parses our document, it
calls our implementations of the SAX event
handlers as the various SAX events occur.
Because saxOne merely writes the XML document
back out to the console, each event handler writes
the appropriate information to System.out.

For startElement events, we write out the XML
syntax of the original tag. For character events,
we write the characters out to the screen. For
ignorableWhitespace events, we write those
characters out to the screen as well; this ensures
that any line breaks or spaces in the original
document will appear in the printed version.

Tutorial – XML Programming in Java Section 4 – The Simple API for XML (SAX)

21

Document Statistics for sonnet.xml:
====================================
DocumentHandler Events:

startDocument 1
endDocument 1
startElement 23
endElement 23
processingInstruction 0
character 20
ignorableWhitespace 25

ErrorHandler Events:
warning 0
error 0
fatalError 0

Total: 93 Events

A cavalcade of ignorable events

As with the DOM, the SAX interface returns more
events than you might think. We generated the
listing at the left by running java saxCounter
sonnet.xml.

One advantage of the SAX interface is that the 25
ignorableWhitespace events are simply
ignored. We don’t have to write code to handle
those events, and we don’t have to waste our time
discarding them.

The saxCounter.java source code is on page
41.

<?xml version="1.0"?>
<!DOCTYPE sonnet SYSTEM "sonnet.dtd">
<sonnet type="Shakespearean">
<author>

<last-name>Shakespeare</last-name>

Sample event listing

For the fragment on the left, here are the events
returned by the parser:

1. A startDocument event
2. A startElement event for the <sonnet>

element
3. An ignorableWhitespace event for the line

break and the two blank spaces in front of the
<author> tag

4. A startElement event for the <author>
element

5. An ignorableWhitespace event for the line
break and the four blank spaces in front of the
<last-name> tag

6. A startElement event for the <last-name>
tag

7. A character event for the characters
“Shakespeare”

8. An endElement event for the <last-name>
tag

Section 4 – The Simple API for XML (SAX) Tutorial – XML Programming in Java

22

...
<book id="1">
<verse>

Sing, O goddess, the anger of
Achilles son of Peleus, that brought
countless ills upon the Achaeans. Many
a brave soul did it send hurrying down
to Hades, and many a hero did it yield
a prey to dogs and vultures, for so
were the counsels of Jove fulfilled
from the day on which the son of
Atreus, king of men, and great
Achilles, first fell out with one
another.

</verse>
<verse>

And which of the gods was it that set
them on to quarrel? It was the son of
Jove and Leto; for he was angry with
the king and sent a pestilence upon
...

SAX versus DOM – part one

To illustrate the SAX API, we’ve taken our original
domOne program and rewritten it to use SAX. To
get an idea of the differences between the two,
we’ll talk about two parsing tasks.

For our first example, to parse The Iliad for all
verses that contain the name “Agamemnon,” the
SAX API would be much more efficient. We would
look for startElement events for the <verse>
element, then look at each character event. We
would save the character data from any event that
contained the name “Agamemnon,” and discard the
rest.

Doing this with the DOM would require us to build
Java objects to represent every part of the
document, store those in a DOM tree, then search
the DOM tree for <verse> elements that contained
the desired text. This would take a lot of memory,
and most of the objects created by the parser
would be discarded without ever being used.

...
<address>

<name>
<title>Mrs.</title>
<first-name>Mary</first-name>
<last-name>McGoon</last-name>

</name>
<street>1401 Main Street</street>
<city>Anytown</city>
<state>NC</state>
<zip>34829</zip>

</address>
<address>

<name>
...

SAX versus DOM – part two

On the other hand, if we were parsing an XML
document containing 10,000 addresses, and we
wanted to sort them by last name, using the SAX
API would make life very difficult for us.

We would have to build a data structure that stored
every character and startElement event that
occurred. Once we built all of these elements, we
would have to sort them, then write a method that
output the names in order.

Using the DOM API instead would save us a lot of
time. DOM would automatically store all of the
data, and we could use DOM functions to move the
nodes in the DOM tree.

Tutorial – XML Programming in Java Section 4 – The Simple API for XML (SAX)

23

Summary

At this point, we’ve covered the two major APIs for
working with XML documents. We’ve also
discussed when you might want to use each one.

In our final topic, we’ll discuss some advanced
parser functions that you might need as you build
an XML application.

Section 5 – Advanced parser functions Tutorial – XML Programming in Java

24

Section 5 – Advanced parser functions

Overview

We’ve covered the basics of using an XML parser
to process XML documents. In this section, we’ll
cover a couple of advanced topics.

First, we’ll build a DOM tree from scratch. In other
words, we’ll create a Document object without
using an XML source file.

Secondly, we’ll show you how to use a parser to
process an XML document contained in a string.

Next, we’ll show you how to manipulate a DOM
tree. We’ll take our sample XML document and
sort the lines of the sonnet.

Finally, we’ll illustrate how using standard
interfaces like DOM and SAX makes it easy to
change parsers. We’ll show you versions of two of
our sample applications that use different XML
parsers. None of the DOM and SAX code
changes.

Document doc = (Document)Class.
forName("com.ibm.xml.dom.DocumentImpl").
newInstance();

Building a DOM tree from scratch

There may be times when you want to build a DOM
tree from scratch. To do this, you create a
Document object, then add various Nodes to it.

You can run java domBuilder to see an
example application that builds a DOM tree from
scratch. This application recreates the DOM tree
built by the original parse of sonnet.xml (with the
exception that it doesn’t create whitespace nodes).

We begin by creating an instance of the
DocumentImpl class. This class implements the
Document interface defined in the DOM.

The domBuilder.java source code is on page
44.

Tutorial – XML Programming in Java Section 5 – Advanced parser functions

25

Element root = doc.
createElement("sonnet");

root.setAttribute("type",
"Shakespearean");

Adding Nodes to our Document

Now that we have our Document object, we can
start creating Nodes. The first Node we’ll create is
a <sonnet> element. We’ll create all the Nodes
we need, then add each one to its appropriate
parent.

Notice that we used the setAttribute method to
set the value of the type attribute for the
<sonnet> element.

Element author =
doc.createElement("author");

Element lastName = doc.
createElement("last-name");

lastName.appendChild(doc.
createTextNode("Shakespeare"));

author.appendChild(lastName);

Establishing your document structure

As we continue to build our DOM tree, we’ll need to
create the structure of our document. To do this,
we’ll use the appendChild method appropriately.
We’ll create the <author> element, then create
the various elements that belong beneath it, then
use appendChild to add all of those elements to
the correct parent.

Notice that createElement is a method of the
Document class. Our Document object owns all
of the elements we create here.

Finally, notice that we create Text nodes for the
content of all elements. The Text node is the child
of the element, and the Text node’s parent is then
added to the appropriate parent.

Element line14 = doc.
createElement("line");

line14.appendChild(doc.
createTextNode("As any she ..."));

text.appendChild(line14);
root.appendChild(text);

doc.appendChild(root);

domBuilder db = new domBuilder();
db.printDOMTree(doc);

Finishing our DOM tree

Once we’ve added everything to our <sonnet>
element, we need to add it to the Document object.
We call the appendChild method one last time,
this time appending the child element to the
Document object itself.

Remember that an XML document can have only
one root element; appendChild will throw an
exception if you try to add more than one root
element to the Document.

When we have the DOM tree built, we create a
domBuilder object, then call its printDOMTree
method to print the DOM tree.

Section 5 – Advanced parser functions Tutorial – XML Programming in Java

26

Using DOM objects to avoid parsing

You can think of a DOM Document object as the
compiled form of an XML document. If you’re using
XML to move data from one place to another, you’ll
save a lot of time and effort if you can send and
receive DOM objects instead of XML source.

This is one of the most common reasons why you
might want to build a DOM tree from scratch.

In the worst case, you would have to create XML
source from a DOM tree before you sent your data
out, then you’d have to create a DOM tree when
you received the XML data. Using DOM objects
directly saves a great deal of time.

One caveat: be aware that a DOM object may be
significantly larger than the XML source. If you
have to send your data across a slow connection,
sending the smaller XML source might more than
make up for the wasted processing time spent
reparsing your data.

parseString ps = new parseString();
StringReader sr =
new StringReader("<?xml version=\"1.0\"?>

<a>AlphaBravo
<c>Charlie</c>");

InputSource iSrc = new InputSource(sr);
ps.parseAndPrint(iSrc);

Parsing an XML string

There may be times when you need to parse an
XML string. IBM’s XML4J parser supports this,
although you have to convert your string into an
InputSource object.

The first step is to create a StringReader object
from your string. Once you’ve done that, you can
create an InputSource from the StringReader.

You can run java parseString to see this code
in action. In this sample application, the XML string
is hardcoded; there are any number of ways you
could get XML input from a user or another
machine. With this technique, you don’t have to
write the XML document to a file system to parse it.

The parseString.java source code is on page
48.

Tutorial – XML Programming in Java Section 5 – Advanced parser functions

27

if (doc != null)
{

sortLines(doc);
printDOMTree(doc);

}
...
public void sortLines(Document doc)
{
NodeList theLines =

doc.getDocumentElement().
getElementsByTagName("line");

...

Sorting Nodes in a DOM tree

To demonstrate how you can change the structure
of a DOM tree, we’ll change our DOM sample to
sort the <line>s of the sonnet. There are several
DOM methods that make it easy to move Nodes
around the DOM tree.

To see this code in action, run java domSorter
sonnet.xml. It doesn’t do much for the rhyme
scheme, but it does correctly sort the <line>
elements.

To begin the task of sorting, we’ll use the
getElementsByTagName method to retrieve all of
the <line> elements in the document. This
method saves us the trouble of writing code to
traverse the entire tree.

The domSorter.java source code is on page 50.

public String getTextFromLine(Node
lineElement)

{
StringBuffer returnString =

new StringBuffer();
if (lineElement.getNodeName().

equals("line"))
{

NodeList kids = lineElement.
getChildNodes();

if (kids != null)
if (kids.item(0).getNodeType() ==

Node.TEXT_NODE)
returnString.append(kids.item(0).

getNodeValue());
}
else

returnString.setLength(0);

return new String(returnString);
}

Retrieving the text of our <line>s

To simplify the code, we created a helper function,
getTextFromLine, that retrieves the text
contained inside a <line> element. It simply
looks at the <line> element’s first child, and
returns its text if that first child is a Text node.

This method returns a Java String so that our
sort routine can use the String.compareTo
method to determine the sorting order.

This code actually should check all of the <line>’s
children, because it could contain entity references
(say the entity &miss; was defined for the text
“mistress”). We’ll leave this improvement as an
exercise for the reader.

Section 5 – Advanced parser functions Tutorial – XML Programming in Java

28

public void sortLines(Document doc)
{

NodeList theLines =
doc.getDocumentElement().

getElementsByTagName("line");
if (theLines != null)
{

int len = theLines.getLength();
for (int i=0; i < len; i++)

for (int j=0; j < (len-1-i); j++)
if (getTextFromLine(

theLines.item(j)).
compareTo(getTextFromLine(

theLines.item(j+1))) > 0)
theLines.item(j).

getParentNode().insertBefore(
theLines.item(j+1),
theLines.item(j));

}
}

Sorting the text

Now that we have the ability to get the text from a
given <line> element, we’re ready to sort the
data. Because we only have 14 elements, we’ll
use a bubble sort.

The bubble sort algorithm compares two adjacent
values, and swaps them if they’re out of order. To
do the swap, we use the getParentNode and
insertBefore methods.

getParentNode returns the parent of any Node;
we use this method to get the parent of the current
<line> (a <lines> element for documents using
the sonnet DTD).

insertBefore(nodeA, nodeB) inserts nodeA
into the DOM tree before nodeB. The most
important feature of insertBefore is that if
nodeA already exists in the DOM tree, it is
removed from its current position and inserted
before nodeB.

parentNode.appendChild(newChild);
...
parentNode.insertBefore(newChild);
...
parentNode.replaceChild(newChild,

oldChild);
...
parentNode.removeChild(oldChild)
...

Useful DOM methods for tree manipulation

In addition to insertBefore, there are several
other DOM methods that are useful for tree
manipulations.

• parentNode.appendChild(newChild)
Appends a node as the last child of a given
parent node. Calling
parentNode.insertBefore(newChild,
null) does the same thing.

• parentNode.replaceChild(newChild,
oldChild)
Replaces oldChild with newChild. The
node oldChild must be a child of
parentNode.

• parentNode.removeChild(oldChild)
Removes oldChild from parentNode.

Tutorial – XML Programming in Java Section 5 – Advanced parser functions

29

/** Doesn’t work **/
for (Node kid = node.getFirstChild();

kid != null;
kid = kid.getNextSibling())

node.removeChild(kid);

/** Does work **/
while (node.hasChildNodes())

node.removeChild(node.getFirstChild());

One more thing about tree manipulation

If you need to remove all the children of a given
node, be aware that it’s more difficult than it seems.
Both code samples at the left look like they would
work. However, only the one on the bottom
actually works. The first sample doesn’t work
because kid’s instance data is updated as soon as
removeChild(kid) is called.

In other words, the for loop removes kid, the first
child, then checks to see if kid.getNextSibling
is null. Because kid has just been removed, it
no longer has any siblings, so
kid.getNextSibling is null. The for loop
will never run more than once. Whether node has
one child or a thousand, the first code sample only
removes the first child. Be sure to use the second
code sample to remove all child nodes.

import com.sun.xml.parser.Parser;
import

com.sun.xml.tree.XmlDocumentBuilder;

...

XmlDocumentBuilder builder =
new XmlDocumentBuilder();

Parser parser =
new com.sun.xml.parser.Parser();

parser.setDocumentHandler(builder);
builder.setParser(parser);
parser.parse(uri);
doc = builder.getDocument();

Using a different DOM parser

Although we can’t think of a single reason why
you’d want to, you can use a parser other than
XML4J to parse your XML document. If you look at
domTwo.java, you’ll see that changing to Sun’s
XML parser required only two changes.

First of all, we had to import the files for Sun’s
classes. That’s simple enough. The only other
thing we had to change was the code that creates
the Parser object. As you can see, setup for
Sun’s parser is a little more complicated, but the
rest of the code is unchanged. All of the DOM
code works without any changes.

Finally, the only other difference in domTwo is the
command line format. For some reason, Sun’s
parser doesn’t resolve file names in the same way.
If you run java domTwo
file:///d:/sonnet.xml (modifying the file
URI based on your system, of course), you’ll see
the same results you saw with domOne.

The domTwo.java source code is on page 54.

Section 5 – Advanced parser functions Tutorial – XML Programming in Java

30

import com.sun.xml.parser.Resolver;

...

try
{

Parser parser =
ParserFactory.makeParser();

parser.setDocumentHandler(this);
parser.setErrorHandler(this);
parser.parse(Resolver.

createInputSource(new File(uri)));
}

Using a different SAX parser

We also created saxTwo.java to illustrate using
Sun’s SAX parser. As with domTwo, we made two
basic changes. The first was to import Sun’s
Resolver class instead of IBM’s SAXParser
class.

We had to change the line that creates the Parser
object, and we had to create an InputSource
object based on the URI we entered. The only
other change we had to make is that the line that
creates the parser has to be inside a try block in
case we get an exception when we create the
Parser object.

The saxTwo.java source code is on page 56.

Summary

In this section, we’ve demonstrated some
advanced coding techniques you can use with XML
parsers. We demonstrated ways to generate DOM
trees directly, how to parse strings as opposed to
files, how to move items around in a DOM tree, and
how changing parsers doesn’t affect code written to
the DOM and SAX standards.

Hope you enjoyed the show!

That’s about it for this tutorial. We’ve talked about
the basic architecture of XML applications, and
we’ve shown you how to work with XML
documents. Future tutorials will cover more details
of building XML applications, including:

• Using visual tools to build XML applications
• Transforming an XML document from one

vocabulary to another
• Creating front-end interfaces to end users or

other processes, and creating back-end
interfaces to data stores

Tutorial – XML Programming in Java Section 5 – Advanced parser functions

31

For more information

If you’d like to know more about XML, check out
the XML zone of developerWorks. The site has
code samples, other tutorials, information about
XML standards efforts, and lots more.

Finally, we’d love to hear from you! We’ve
designed developerWorks to be a resource for
developers. If you have any comments,
suggestions, or complaints about the site, let us
know.

Thanks,
-Doug Tidwell

http://www.ibm.com/xml/
mailto:dtidwell@us.ibm.com

Appendix – Listings of our samples Tutorial – XML Programming in Java

32

Appendix – Listings of our samples

This section lists all of the samples discussed in the tutorial. The listings include the Java source and the
XML documents used as samples.

sonnet.xml
This is the sample XML document used throughout the tutorial.

<?xml version="1.0"?>
<!DOCTYPE sonnet SYSTEM "sonnet.dtd">
<sonnet type="Shakespearean">

<author>
<last-name>Shakespeare</last-name>
<first-name>William</first-name>
<nationality>British</nationality>
<year-of-birth>1564</year-of-birth>
<year-of-death>1616</year-of-death>

</author>
<title>Sonnet 130</title>
<text>

<line>My mistress' eyes are nothing like the sun,</line>
<line>Coral is far more red than her lips red.</line>
<line>If snow be white, why then her breasts are dun,</line>
<line>If hairs be wires, black wires grow on her head.</line>
<line>I have seen roses damasked, red and white,</line>
<line>But no such roses see I in her cheeks.</line>
<line>And in some perfumes is there more delight</line>
<line>Than in the breath that from my mistress reeks.</line>
<line>I love to hear her speak, yet well I know</line>
<line>That music hath a far more pleasing sound.</line>
<line>I grant I never saw a goddess go,</line>
<line>My mistress when she walks, treads on the ground.</line>
<line>And yet, by Heaven, I think my love as rare</line>
<line>As any she belied with false compare.</line>

</text>
</sonnet>

sonnet.dtd
This is the DTD for our sample document.

<!-- sonnet.dtd -->
<!ELEMENT sonnet (author,title?,text) >
<!ATTLIST sonnet

type (Shakespearean | Petrarchan) "Shakespearean">

<!ELEMENT text (line,line,line,line,
line,line,line,line,
line,line,line,line,
line,line) >

<!ELEMENT author (last-name,first-name,nationality,
year-of-birth?,year-of-death?) >

<!ELEMENT title (#PCDATA)>

Tutorial – XML Programming in Java Appendix – Listings of our samples

33

<!ELEMENT last-name (#PCDATA)>
<!ELEMENT first-name (#PCDATA)>
<!ELEMENT nationality (#PCDATA)>
<!ELEMENT year-of-birth (#PCDATA)>
<!ELEMENT year-of-death (#PCDATA)>
<!ELEMENT line (#PCDATA)>

domOne.java
This is our first DOM application. It parses an XML document and writes its contents to standard output.

/*
* (C) Copyright IBM Corp. 1999 All rights reserved.
*
* US Government Users Restricted Rights Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* The program is provided "as is" without any warranty express or
* implied, including the warranty of non-infringement and the implied
* warranties of merchantibility and fitness for a particular purpose.
* IBM will not be liable for any damages suffered by you as a result
* of using the Program. In no event will IBM be liable for any
* special, indirect or consequential damages or lost profits even if
* IBM has been advised of the possibility of their occurrence. IBM
* will not be liable for any third party claims against you.
*/

import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;

import org.w3c.dom.Attr;
import org.w3c.dom.Document;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import com.ibm.xml.parsers.*;

/**
* domOne.java
* Illustrates how to go through a DOM tree.
*/

public class domOne
{

public void parseAndPrint(String uri)
{

Document doc = null;

try
{

DOMParser parser = new DOMParser();
parser.parse(uri);
doc = parser.getDocument();

}
catch (Exception e)
{

System.err.println("Sorry, an error occurred: " + e);
}

// We've parsed the document now, so let's print it.

Appendix – Listings of our samples Tutorial – XML Programming in Java

34

if (doc != null)
printDOMTree(doc);

}

/** Prints the specified node, then prints all of its children. */
public void printDOMTree(Node node)
{

int type = node.getNodeType();
switch (type)
{

// print the document element
case Node.DOCUMENT_NODE:
{

System.out.println("<?xml version=\"1.0\" ?>");
printDOMTree(((Document)node).getDocumentElement());
break;

}

// print element with attributes
case Node.ELEMENT_NODE:
{

System.out.print("<");
System.out.print(node.getNodeName());
NamedNodeMap attrs = node.getAttributes();
for (int i = 0; i < attrs.getLength(); i++)
{

Node attr = attrs.item(i);
System.out.print(" " + attr.getNodeName() +

"=\"" + attr.getNodeValue() +
"\"");

}
System.out.println(">");

NodeList children = node.getChildNodes();
if (children != null)
{

int len = children.getLength();
for (int i = 0; i < len; i++)

printDOMTree(children.item(i));
}

break;
}

// handle entity reference nodes
case Node.ENTITY_REFERENCE_NODE:
{

System.out.print("&");
System.out.print(node.getNodeName());
System.out.print(";");
break;

}

// print cdata sections
case Node.CDATA_SECTION_NODE:
{

System.out.print("<![CDATA[");
System.out.print(node.getNodeValue());
System.out.print("]]>");
break;

}

// print text

Tutorial – XML Programming in Java Appendix – Listings of our samples

35

case Node.TEXT_NODE:
{

System.out.print(node.getNodeValue());
break;

}

// print processing instruction
case Node.PROCESSING_INSTRUCTION_NODE:
{

System.out.print("<?");
System.out.print(node.getNodeName());
String data = node.getNodeValue();
{

System.out.print(" ");
System.out.print(data);

}
System.out.print("?>");
break;

}
}

if (type == Node.ELEMENT_NODE)
{

System.out.println();
System.out.print("</");
System.out.print(node.getNodeName());
System.out.print('>');

}
}

/** Main program entry point. */
public static void main(String argv[])
{

if (argv.length == 0)
{

System.out.println("Usage: java domOne uri");
System.out.println(" where uri is the URI of the XML document you want to

print.");
System.out.println(" Sample: java domOne sonnet.xml");
System.exit(1);

}

domOne d1 = new domOne();
d1.parseAndPrint(argv[0]);

}
}

domCounter.java
This code parses an XML document, then goes through the DOM tree to gather statistics about the
document. When the statistics are calculated, the code writes them to standard output.

/*
* (C) Copyright IBM Corp. 1999 All rights reserved.
*
* US Government Users Restricted Rights Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* The program is provided "as is" without any warranty express or
* implied, including the warranty of non-infringement and the implied
* warranties of merchantibility and fitness for a particular purpose.
* IBM will not be liable for any damages suffered by you as a result

Appendix – Listings of our samples Tutorial – XML Programming in Java

36

* of using the Program. In no event will IBM be liable for any
* special, indirect or consequential damages or lost profits even if
* IBM has been advised of the possibility of their occurrence. IBM
* will not be liable for any third party claims against you.
*/

import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;

import org.w3c.dom.Document;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import com.ibm.xml.parsers.DOMParser;

/**
* domCounter.java
* This code creates a DOM parser, parses a document, then
* prints statistics about the number and type of nodes
* found in the document.
*/

public class domCounter
{

int documentNodes = 0;
int elementNodes = 0;
int entityReferenceNodes = 0;
int cdataSections = 0;
int textNodes = 0;
int processingInstructions = 0;

public void parseAndCount(String uri)
{

Document doc = null;

try
{

DOMParser parser = new DOMParser();
parser.parse(uri);
doc = parser.getDocument();

}
catch (Exception e)
{

System.err.println("Sorry, an error occurred: " + e);
}

// We've parsed the document now, so let's scan the DOM tree and
// print the statistics.

if (doc != null)
{

scanDOMTree(doc);
System.out.println("Document Statistics for " + uri + ":");
System.out.println("====================================");
System.out.println("Document Nodes: " + documentNodes);
System.out.println("Element Nodes: " + elementNodes);
System.out.println("Entity Reference Nodes: " + entityReferenceNodes);
System.out.println("CDATA Sections: " + cdataSections);
System.out.println("Text Nodes: " + textNodes);
System.out.println("Processing Instructions: " + processingInstructions);
System.out.println(" ----------");
int totalNodes = documentNodes + elementNodes + entityReferenceNodes +

cdataSections + textNodes + processingInstructions;

Tutorial – XML Programming in Java Appendix – Listings of our samples

37

System.out.println("Total: " + totalNodes + " Nodes");
}

}

/** Scans the DOM tree and counts the different types of nodes. */
public void scanDOMTree(Node node)
{

int type = node.getNodeType();
switch (type)
{

case Node.DOCUMENT_NODE:
documentNodes++;
scanDOMTree(((Document)node).getDocumentElement());
break;

case Node.ELEMENT_NODE:
elementNodes++;
NodeList children = node.getChildNodes();
if (children != null)
{

int len = children.getLength();
for (int i = 0; i < len; i++)

scanDOMTree(children.item(i));
}
break;

case Node.ENTITY_REFERENCE_NODE:
entityReferenceNodes++;
break;

case Node.CDATA_SECTION_NODE:
cdataSections++;
break;

case Node.TEXT_NODE:
textNodes++;
break;

case Node.PROCESSING_INSTRUCTION_NODE:
processingInstructions++;
break;

}
}

/** Main program entry point. */
public static void main(String argv[])
{

if (argv.length == 0)
{

System.out.println("Usage: java domCounter uri");
System.out.println(" where uri is the URI of your XML document.");
System.out.println(" Sample: java domCounter sonnet.xml");
System.exit(1);

}

domCounter dc = new domCounter();
dc.parseAndCount(argv[0]);

}
}

saxOne.java
This is our first SAX application. It parses an XML document and writes its contents to standard output.

Appendix – Listings of our samples Tutorial – XML Programming in Java

38

/*
* (C) Copyright IBM Corp. 1999 All rights reserved.
*
* US Government Users Restricted Rights Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* The program is provided "as is" without any warranty express or
* implied, including the warranty of non-infringement and the implied
* warranties of merchantibility and fitness for a particular purpose.
* IBM will not be liable for any damages suffered by you as a result
* of using the Program. In no event will IBM be liable for any
* special, indirect or consequential damages or lost profits even if
* IBM has been advised of the possibility of their occurrence. IBM
* will not be liable for any third party claims against you.
*/

import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;

import org.xml.sax.AttributeList;
import org.xml.sax.HandlerBase;
import org.xml.sax.Parser;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.helpers.ParserFactory;

import com.ibm.xml.parsers.SAXParser;

/**
* saxOne.java
* This sample program illustrates how to use a SAX parser. It
* parses a document and writes the document’s contents back to
* standard output.
*/

public class saxOne
extends HandlerBase

{
public void parseURI(String uri)
{

SAXParser parser = new SAXParser();
parser.setDocumentHandler(this);
parser.setErrorHandler(this);
try
{

parser.parse(uri);
}
catch (Exception e)
{

System.err.println(e);
}

}

/** Processing instruction. */
public void processingInstruction(String target, String data)
{

System.out.print("<?");
System.out.print(target);
if (data != null && data.length() > 0)
{

System.out.print(' ');

Tutorial – XML Programming in Java Appendix – Listings of our samples

39

System.out.print(data);
}
System.out.print("?>");

}

/** Start document. */
public void startDocument()
{

System.out.println("<?xml version=\"1.0\"?>");
}

/** Start element. */
public void startElement(String name, AttributeList attrs)
{

System.out.print("<");
System.out.print(name);
if (attrs != null)
{

int len = attrs.getLength();
for (int i = 0; i < len; i++)
{

System.out.print(" ");
System.out.print(attrs.getName(i));
System.out.print("=\"");
System.out.print(attrs.getValue(i));
System.out.print("\"");

}
}
System.out.print(">");

}

/** Characters. */
public void characters(char ch[], int start, int length)
{

System.out.print(new String(ch, start, length));
}

/** Ignorable whitespace. */
public void ignorableWhitespace(char ch[], int start, int length)
{

characters(ch, start, length);
}

/** End element. */
public void endElement(String name)
{

System.out.print("</");
System.out.print(name);
System.out.print(">");

}

/** End document. */
public void endDocument()
{

// No need to do anything.
}

//
// ErrorHandler methods
//

/** Warning. */

Appendix – Listings of our samples Tutorial – XML Programming in Java

40

public void warning(SAXParseException ex)
{

System.err.println("[Warning] "+
getLocationString(ex)+": "+
ex.getMessage());

}

/** Error. */
public void error(SAXParseException ex)
{

System.err.println("[Error] "+
getLocationString(ex)+": "+
ex.getMessage());

}

/** Fatal error. */
public void fatalError(SAXParseException ex)
throws SAXException

{
System.err.println("[Fatal Error] "+

getLocationString(ex)+": "+
ex.getMessage());

throw ex;
}

/** Returns a string of the location. */
private String getLocationString(SAXParseException ex)
{

StringBuffer str = new StringBuffer();

String systemId = ex.getSystemId();
if (systemId != null)
{

int index = systemId.lastIndexOf('/');
if (index != -1)
systemId = systemId.substring(index + 1);

str.append(systemId);
}
str.append(':');
str.append(ex.getLineNumber());
str.append(':');
str.append(ex.getColumnNumber());

return str.toString();
}

/** Main program entry point. */
public static void main(String argv[])
{

if (argv.length == 0)
{

System.out.println("Usage: java saxOne uri");
System.out.println(" where uri is the URI of your XML document.");
System.out.println(" Sample: java saxOne sonnet.xml");
System.exit(1);

}

saxOne s1 = new saxOne();
s1.parseURI(argv[0]);

}
}

Tutorial – XML Programming in Java Appendix – Listings of our samples

41

saxCounter.java
This code parses an XML document and calculates statistics about the document as it receives SAX
events. When the entire document has been parsed, the code writes the statistics to standard output.

/*
* (C) Copyright IBM Corp. 1999 All rights reserved.
*
* US Government Users Restricted Rights Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* The program is provided "as is" without any warranty express or
* implied, including the warranty of non-infringement and the implied
* warranties of merchantibility and fitness for a particular purpose.
* IBM will not be liable for any damages suffered by you as a result
* of using the Program. In no event will IBM be liable for any
* special, indirect or consequential damages or lost profits even if
* IBM has been advised of the possibility of their occurrence. IBM
* will not be liable for any third party claims against you.
*/

import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;

import org.xml.sax.AttributeList;
import org.xml.sax.HandlerBase;
import org.xml.sax.Parser;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.helpers.ParserFactory;

import com.ibm.xml.parsers.SAXParser;

/**
* saxCounter.java
* This sample program calculates statistics for an XML document,
* based on the SAX events received. When the parse is complete,
* it prints the statistics to standard output.
*/

public class saxCounter
extends HandlerBase

{

int startDocumentEvents = 0;
int endDocumentEvents = 0;
int startElementEvents = 0;
int endElementEvents = 0;
int processingInstructionEvents = 0;
int characterEvents = 0;
int ignorableWhitespaceEvents = 0;
int warningEvents = 0;
int errorEvents = 0;
int fatalErrorEvents = 0;

public void parseURI(String uri)
{

SAXParser parser = new SAXParser();
parser.setDocumentHandler(this);
parser.setErrorHandler(this);
try
{

Appendix – Listings of our samples Tutorial – XML Programming in Java

42

parser.parse(uri);
}
catch (Exception e)
{

System.err.println(e);
}

System.out.println("Document Statistics for " + uri + ":");
System.out.println("====================================");
System.out.println("DocumentHandler Events:");
System.out.println(" startDocument " +

startDocumentEvents);
System.out.println(" endDocument " +

endDocumentEvents);
System.out.println(" startElement " +

startElementEvents);
System.out.println(" endElement " +

endElementEvents);
System.out.println(" processingInstruction " +

processingInstructionEvents);
System.out.println(" character " +

characterEvents);
System.out.println(" ignorableWhitespace " +

ignorableWhitespaceEvents);
System.out.println("ErrorHandler Events:");
System.out.println(" warning " +

warningEvents);
System.out.println(" error " +

errorEvents);
System.out.println(" fatalError " +

fatalErrorEvents);
System.out.println(" ----------");
int totalEvents = startDocumentEvents + endDocumentEvents +

startElementEvents + endElementEvents +
processingInstructionEvents +
characterEvents + ignorableWhitespaceEvents +
warningEvents + errorEvents + fatalErrorEvents;

System.out.println("Total: " +
totalEvents + " Events");

}

/** Processing instruction. */
public void processingInstruction(String target, String data)
{

processingInstructionEvents++;
}

/** Start document. */
public void startDocument()
{

startDocumentEvents++;
}

/** Start element. */
public void startElement(String name, AttributeList attrs)
{

startElementEvents++;
}

/** Characters. */
public void characters(char ch[], int start, int length)
{

characterEvents++;

Tutorial – XML Programming in Java Appendix – Listings of our samples

43

}

/** Ignorable whitespace. */
public void ignorableWhitespace(char ch[], int start, int length)
{

ignorableWhitespaceEvents++;
}

/** End element. */
public void endElement(String name)
{

endElementEvents++;
}

/** End document. */
public void endDocument()
{

endDocumentEvents++;
}

//
// ErrorHandler methods
//

/** Warning. */
public void warning(SAXParseException ex)
{

warningEvents++;
}

/** Error. */
public void error(SAXParseException ex)
{

errorEvents++;
}

/** Fatal error. */
public void fatalError(SAXParseException ex)
throws SAXException

{
fatalErrorEvents++;
throw ex;

}

/** Main program entry point. */
public static void main(String argv[])
{

if (argv.length == 0)
{

System.out.println("Usage: java saxCounter uri");
System.out.println(" where uri is the URI of your XML document.");
System.out.println(" Sample: java saxCounter sonnet.xml");
System.exit(1);

}

saxCounter sc = new saxCounter();
sc.parseURI(argv[0]);

}
}

Appendix – Listings of our samples Tutorial – XML Programming in Java

44

domBuilder.java
This code builds a DOM tree without using an XML document as source. When the tree is complete, this
code writes the tree’s contents to standard output.

/*
* (C) Copyright IBM Corp. 1999 All rights reserved.
*
* US Government Users Restricted Rights Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* The program is provided "as is" without any warranty express or
* implied, including the warranty of non-infringement and the implied
* warranties of merchantibility and fitness for a particular purpose.
* IBM will not be liable for any damages suffered by you as a result
* of using the Program. In no event will IBM be liable for any
* special, indirect or consequential damages or lost profits even if
* IBM has been advised of the possibility of their occurrence. IBM
* will not be liable for any third party claims against you.
*/

import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;

import org.w3c.dom.Attr;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import com.ibm.xml.parsers.*;

/**
* domBuilder.java
* This sample program illustrates how to create a DOM tree from scratch.
*/

public class domBuilder
{

/** Prints the specified node, recursively. */
public void printDOMTree(Node node)
{

int type = node.getNodeType();
switch (type)
{

// print the document element
case Node.DOCUMENT_NODE:
{

System.out.println("<?xml version=\"1.0\" ?>");
printDOMTree(((Document)node).getDocumentElement());
break;

}

// print element with attributes
case Node.ELEMENT_NODE:
{

System.out.print("<");
System.out.print(node.getNodeName());
NamedNodeMap attrs = node.getAttributes();
for (int i = 0; i < attrs.getLength(); i++)
{

Node attr = attrs.item(i);

Tutorial – XML Programming in Java Appendix – Listings of our samples

45

System.out.print(" " + attr.getNodeName() +
"=\"" + attr.getNodeValue() +
"\"");

}
System.out.println(">");

NodeList children = node.getChildNodes();
if (children != null)
{

int len = children.getLength();
for (int i = 0; i < len; i++)

printDOMTree(children.item(i));
}

break;
}

// handle entity reference nodes
case Node.ENTITY_REFERENCE_NODE:
{

System.out.print("&");
System.out.print(node.getNodeName());
System.out.print(";");
break;

}

// print cdata sections
case Node.CDATA_SECTION_NODE:
{

System.out.print("<![CDATA[");
System.out.print(node.getNodeValue());
System.out.print("]]>");
break;

}

// print text
case Node.TEXT_NODE:
{

System.out.print(node.getNodeValue());
break;

}

// print processing instruction
case Node.PROCESSING_INSTRUCTION_NODE:
{

System.out.print("<?");
System.out.print(node.getNodeName());
String data = node.getNodeValue();
{

System.out.print(" ");
System.out.print(data);

}
System.out.print("?>");
break;

}
}

if (type == Node.ELEMENT_NODE)
{

System.out.println();
System.out.print("</");
System.out.print(node.getNodeName());
System.out.print('>');

Appendix – Listings of our samples Tutorial – XML Programming in Java

46

}
}

/** Main program entry point. */
public static void main(String argv[])
{

if (argv.length == 1 && argv[0].equals("-help"))
{

System.out.println("Usage: java domBuilder");
System.out.println(" This code builds a DOM tree, then prints it.");
System.exit(1);

}

try
{

Document doc = (Document)Class.
forName("com.ibm.xml.dom.DocumentImpl").
newInstance();

Element root = doc.createElement("sonnet");
root.setAttribute("type", "Shakespearean");

Element author = doc.createElement("author");

Element lastName = doc.createElement("last-name");
lastName.appendChild(doc.createTextNode("Shakespeare"));
author.appendChild(lastName);

Element firstName = doc.createElement("first-name");
firstName.appendChild(doc.createTextNode("William"));
author.appendChild(firstName);

Element nationality = doc.createElement("nationality");
nationality.appendChild(doc.createTextNode("British"));
author.appendChild(nationality);

Element yearOfBirth = doc.createElement("year-of-birth");
yearOfBirth.appendChild(doc.createTextNode("1564"));
author.appendChild(yearOfBirth);

Element yearOfDeath = doc.createElement("year-of-death");
yearOfDeath.appendChild(doc.createTextNode("1616"));
author.appendChild(yearOfDeath);

root.appendChild(author);

Element title = doc.createElement("title");
title.appendChild(doc.createTextNode("Sonnet 130"));
root.appendChild(title);

Element text = doc.createElement("text");

Element line01 = doc.createElement("line");
line01.appendChild(doc.createTextNode("My mistress' eyes are nothing like the

sun,"));
text.appendChild(line01);

Element line02 = doc.createElement("line");
line02.appendChild(doc.createTextNode("Coral is far more red than her lips

red."));
text.appendChild(line02);

Element line03 = doc.createElement("line");

Tutorial – XML Programming in Java Appendix – Listings of our samples

47

line03.appendChild(doc.createTextNode("If snow be white, why then her breasts
are dun,"));

text.appendChild(line03);

Element line04 = doc.createElement("line");
line04.appendChild(doc.createTextNode("If hairs be wires, black wires grow on

her head."));
text.appendChild(line04);

Element line05 = doc.createElement("line");
line05.appendChild(doc.createTextNode("I have seen roses damasked, red and

white,"));
text.appendChild(line05);

Element line06 = doc.createElement("line");
line06.appendChild(doc.createTextNode("But no such roses see I in her

cheeks."));
text.appendChild(line06);

Element line07 = doc.createElement("line");
line07.appendChild(doc.createTextNode("And in some perfumes is there more

delight"));
text.appendChild(line07);

Element line08 = doc.createElement("line");
line08.appendChild(doc.createTextNode("Than in the breath that from my mistress

reeks."));
text.appendChild(line08);

Element line09 = doc.createElement("line");
line09.appendChild(doc.createTextNode("I love to hear her speak, yet well I

know"));
text.appendChild(line09);

Element line10 = doc.createElement("line");
line10.appendChild(doc.createTextNode("That music hath a far more pleasing

sound."));
text.appendChild(line10);

Element line11 = doc.createElement("line");
line11.appendChild(doc.createTextNode("I grant I never saw a goddess go,"));
text.appendChild(line11);

Element line12 = doc.createElement("line");
line12.appendChild(doc.createTextNode("My mistress when she walks, treads on the

ground."));
text.appendChild(line12);

Element line13 = doc.createElement("line");
line13.appendChild(doc.createTextNode("And yet, by Heaven, I think my love as

rare"));
text.appendChild(line13);

Element line14 = doc.createElement("line");
line14.appendChild(doc.createTextNode("As any she belied with false compare."));
text.appendChild(line14);

root.appendChild(text);

doc.appendChild(root);

domBuilder db = new domBuilder();
db.printDOMTree(doc);

Appendix – Listings of our samples Tutorial – XML Programming in Java

48

}
catch (Exception e)
{

System.err.println(e);
}

}
}

parseString.java
This code illustrates how to parse a string that contains an XML document.

/*
* (C) Copyright IBM Corp. 1999 All rights reserved.
*
* US Government Users Restricted Rights Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* The program is provided "as is" without any warranty express or
* implied, including the warranty of non-infringement and the implied
* warranties of merchantibility and fitness for a particular purpose.
* IBM will not be liable for any damages suffered by you as a result
* of using the Program. In no event will IBM be liable for any
* special, indirect or consequential damages or lost profits even if
* IBM has been advised of the possibility of their occurrence. IBM
* will not be liable for any third party claims against you.
*/

import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;
import java.io.Reader;
import java.io.StringReader;

import org.w3c.dom.Attr;
import org.w3c.dom.Document;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import org.xml.sax.InputSource;
import com.ibm.xml.parsers.*;

/**
* parseString.java
* This sample program illustrates how to parse an XML document
* contained in a String.
*/

public class parseString
{

public void parseAndPrint(InputSource xmlSource)
{

Document doc = null;

try
{

DOMParser parser = new DOMParser();
parser.parse(xmlSource);
doc = parser.getDocument();

}
catch (Exception e)
{

System.err.println("Sorry, an error occurred: " + e);

Tutorial – XML Programming in Java Appendix – Listings of our samples

49

}

// We've parsed the document now, so let's print it.

if (doc != null)
printDOMTree(doc);

}

/** Prints the specified node, recursively. */
public void printDOMTree(Node node)
{

int type = node.getNodeType();
switch (type)
{

// print the document element
case Node.DOCUMENT_NODE:
{

System.out.println("<?xml version=\"1.0\" ?>");
printDOMTree(((Document)node).getDocumentElement());
break;

}

// print element with attributes
case Node.ELEMENT_NODE:
{

System.out.print("<");
System.out.print(node.getNodeName());
NamedNodeMap attrs = node.getAttributes();
for (int i = 0; i < attrs.getLength(); i++)
{

Node attr = attrs.item(i);
System.out.print(" " + attr.getNodeName() +

"=\"" + attr.getNodeValue() +
"\"");

}
System.out.println(">");

NodeList children = node.getChildNodes();
if (children != null)
{

int len = children.getLength();
for (int i = 0; i < len; i++)

printDOMTree(children.item(i));
}

break;
}

// handle entity reference nodes
case Node.ENTITY_REFERENCE_NODE:
{

System.out.print("&");
System.out.print(node.getNodeName());
System.out.print(";");
break;

}

// print cdata sections
case Node.CDATA_SECTION_NODE:
{

System.out.print("<![CDATA[");
System.out.print(node.getNodeValue());
System.out.print("]]>");

Appendix – Listings of our samples Tutorial – XML Programming in Java

50

break;
}

// print text
case Node.TEXT_NODE:
{

System.out.print(node.getNodeValue());
break;

}

// print processing instruction
case Node.PROCESSING_INSTRUCTION_NODE:
{

System.out.print("<?");
System.out.print(node.getNodeName());
String data = node.getNodeValue();
{

System.out.print(" ");
System.out.print(data);

}
System.out.print("?>");
break;

}
}

if (type == Node.ELEMENT_NODE)
{

System.out.println();
System.out.print("</");
System.out.print(node.getNodeName());
System.out.print('>');

}
}

/** Main program entry point. */
public static void main(String argv[])
{

parseString ps = new parseString();
StringReader sr = new StringReader("<?xml

version=\"1.0\"?><a>AlphaBravo<c>Charlie</c>");
InputSource iSrc = new InputSource(sr);
ps.parseAndPrint(iSrc);

}
}

domSorter.java
This code looks for all the <line> elements in the XML document, then sorts them. It illustrates how to
manipulate a DOM tree.

/*
* (C) Copyright IBM Corp. 1999 All rights reserved.
*
* US Government Users Restricted Rights Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* The program is provided "as is" without any warranty express or
* implied, including the warranty of non-infringement and the implied
* warranties of merchantibility and fitness for a particular purpose.
* IBM will not be liable for any damages suffered by you as a result
* of using the Program. In no event will IBM be liable for any
* special, indirect or consequential damages or lost profits even if

Tutorial – XML Programming in Java Appendix – Listings of our samples

51

* IBM has been advised of the possibility of their occurrence. IBM
* will not be liable for any third party claims against you.
*/

import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;

import org.w3c.dom.Attr;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import com.ibm.xml.parsers.*;

/**
* domSorter.java
* This sample program illustrates how to rearrange the nodes in a
* DOM tree.

*/

public class domSorter
{

public void parseAndSortLines(String uri)
{

Document doc = null;

try
{

DOMParser parser = new DOMParser();
parser.parse(uri);
doc = parser.getDocument();

}
catch (Exception e)
{

System.err.println("Sorry, an error occurred: " + e);
}

// We've parsed the document now, so let's sort it and print it.

if (doc != null)
{

sortLines(doc);
printDOMTree(doc);

}
}

public String getTextFromLine(Node lineElement)
{

StringBuffer returnString = new StringBuffer();

if (lineElement.getNodeName().equals("line"))
{

NodeList kids = lineElement.getChildNodes();
if (kids != null)
{

if (kids.item(0).getNodeType() == Node.TEXT_NODE)
{

returnString.append(kids.item(0).getNodeValue());
}

}
}

Appendix – Listings of our samples Tutorial – XML Programming in Java

52

else
returnString.setLength(0);

return new String(returnString);
}

/** Sorts the <line> elements in the file.
It uses a bubble sort algorithm, since a
sonnet only has 14 lines. **/

public void sortLines(Document doc)
{

NodeList theLines = doc.getDocumentElement().
getElementsByTagName("line");

if (theLines != null)
{

int len = theLines.getLength();
for (int i = 0; i < len; i++)

for (int j = 0; j < (len - 1 - i); j++)
if (getTextFromLine(theLines.item(j)).

compareTo(getTextFromLine(theLines.item(j+1))) > 0)
theLines.item(j).getParentNode().

insertBefore(theLines.item(j+1),
theLines.item(j));

}
}

/** Prints the specified node, recursively. */
public void printDOMTree(Node node)
{

int type = node.getNodeType();
switch (type)
{

// print the document element
case Node.DOCUMENT_NODE:
{

System.out.println("<?xml version=\"1.0\" ?>");
printDOMTree(((Document)node).getDocumentElement());
break;

}

// print element with attributes
case Node.ELEMENT_NODE:
{

System.out.print("<");
System.out.print(node.getNodeName());
NamedNodeMap attrs = node.getAttributes();
for (int i = 0; i < attrs.getLength(); i++)
{

Node attr = attrs.item(i);
System.out.print(" " + attr.getNodeName() +

"=\"" + attr.getNodeValue() +
"\"");

}
System.out.println(">");

NodeList children = node.getChildNodes();
if (children != null)
{

int len = children.getLength();
for (int i = 0; i < len; i++)

printDOMTree(children.item(i));
}
break;

Tutorial – XML Programming in Java Appendix – Listings of our samples

53

}

// handle entity reference nodes
case Node.ENTITY_REFERENCE_NODE:
{

System.out.print("&");
System.out.print(node.getNodeName());
System.out.print(";");
break;

}

// print cdata sections
case Node.CDATA_SECTION_NODE:
{

System.out.print("<![CDATA[");
System.out.print(node.getNodeValue());
System.out.print("]]>");
break;

}

// print text
case Node.TEXT_NODE:
{

if (node.getNodeValue().trim().length() > 0)
System.out.print(node.getNodeValue());

break;
}

// print processing instruction
case Node.PROCESSING_INSTRUCTION_NODE:
{

System.out.print("<?");
System.out.print(node.getNodeName());
String data = node.getNodeValue();
if (data != null && data.length() > 0)
{

System.out.print(" ");
System.out.print(data);

}
System.out.print("?>");
break;

}
}

if (type == Node.ELEMENT_NODE)
{

System.out.println();
System.out.print("</");
System.out.print(node.getNodeName());
System.out.print('>');

}
}

/** Main program entry point. */
public static void main(String argv[])
{

if (argv.length == 0)
{

System.out.println("Usage: java domSorter uri");
System.out.println(" where uri is the URI of the XML document you want to

sort.");
System.out.println(" Sample: java domSorter sonnet.xml");
System.out.println();

Appendix – Listings of our samples Tutorial – XML Programming in Java

54

System.out.println(" Note: Your XML document must use the sonnet DTD.");
System.exit(1);

}

domSorter ds = new domSorter();
ds.parseAndSortLines(argv[0]);

}
}

domTwo.java
This code is identical to domOne.java, except it uses Sun’s XML parser instead of IBM’s. It illustrates
the portability of the DOM interfaces.

/*
* (C) Copyright IBM Corp. 1999 All rights reserved.
*
* US Government Users Restricted Rights Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* The program is provided "as is" without any warranty express or
* implied, including the warranty of non-infringement and the implied
* warranties of merchantibility and fitness for a particular purpose.
* IBM will not be liable for any damages suffered by you as a result
* of using the Program. In no event will IBM be liable for any
* special, indirect or consequential damages or lost profits even if
* IBM has been advised of the possibility of their occurrence. IBM
* will not be liable for any third party claims against you.
*/

import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;

import org.w3c.dom.Attr;
import org.w3c.dom.Document;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

import com.sun.xml.parser.Parser;
import com.sun.xml.tree.XmlDocumentBuilder;

/**
* domTwo.java
* Illustrates how to go through a DOM tree. Identical to domOne,
* except it uses Sun’s XML parser instead of IBM’s.
*/

public class domTwo
{

public void parseAndPrint(String uri)
{

Document doc = null;

try
{

XmlDocumentBuilder builder = new XmlDocumentBuilder();
Parser parser = new com.sun.xml.parser.Parser();
parser.setDocumentHandler(builder);
builder.setParser(parser);
builder.setDisableNamespaces(false);

Tutorial – XML Programming in Java Appendix – Listings of our samples

55

parser.parse(uri);
doc = builder.getDocument();

}
catch (Exception e)
{

System.err.println("Sorry, an error occurred: " + e);
}

// We've parsed the document now, so let's print it.

if (doc != null)
printDOMTree(doc);

}

/** Prints the specified node, recursively. */
public void printDOMTree(Node node)
{

int type = node.getNodeType();
switch (type)
{

// print the document element
case Node.DOCUMENT_NODE:
{

System.out.println("<?xml version=\"1.0\" ?>");
printDOMTree(((Document)node).getDocumentElement());
break;

}

// print element with attributes
case Node.ELEMENT_NODE:
{

System.out.print("<");
System.out.print(node.getNodeName());
NamedNodeMap attrs = node.getAttributes();
for (int i = 0; i < attrs.getLength(); i++)
{

Node attr = attrs.item(i);
System.out.print(" " + attr.getNodeName() +

"=\"" + attr.getNodeValue() +
"\"");

}
System.out.println(">");

NodeList children = node.getChildNodes();
if (children != null)
{

int len = children.getLength();
for (int i = 0; i < len; i++)

printDOMTree(children.item(i));
}

break;
}

// handle entity reference nodes
case Node.ENTITY_REFERENCE_NODE:
{

System.out.print("&");
System.out.print(node.getNodeName());
System.out.print(";");
break;

}

Appendix – Listings of our samples Tutorial – XML Programming in Java

56

// print cdata sections
case Node.CDATA_SECTION_NODE:
{

System.out.print("<![CDATA[");
System.out.print(node.getNodeValue());
System.out.print("]]>");
break;

}

// print text
case Node.TEXT_NODE:
{

System.out.print(node.getNodeValue());
break;

}

// print processing instruction
case Node.PROCESSING_INSTRUCTION_NODE:
{

System.out.print("<?");
System.out.print(node.getNodeName());
String data = node.getNodeValue();
{

System.out.print(" ");
System.out.print(data);

}
System.out.print("?>");
break;

}
}

if (type == Node.ELEMENT_NODE)
{

System.out.println();
System.out.print("</");
System.out.print(node.getNodeName());
System.out.print('>');

}
}

/** Main program entry point. */
public static void main(String argv[])
{

if (argv.length == 0)
{

System.out.println("Usage: java domTwo uri");
System.out.println(" where uri is the URI of the XML document you want to

print.");
System.out.println(" Sample: java domTwo sonnet.xml");
System.exit(1);

}

domTwo d2 = new domTwo();
d2.parseAndPrint(argv[0]);

}
}

saxTwo.java
This code is identical to saxOne.java, except it uses Sun’s XML parser instead of IBM’s. It illustrates
the portability of the SAX interfaces.

Tutorial – XML Programming in Java Appendix – Listings of our samples

57

/*
* (C) Copyright IBM Corp. 1999 All rights reserved.
*
* US Government Users Restricted Rights Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
*
* The program is provided "as is" without any warranty express or
* implied, including the warranty of non-infringement and the implied
* warranties of merchantibility and fitness for a particular purpose.
* IBM will not be liable for any damages suffered by you as a result
* of using the Program. In no event will IBM be liable for any
* special, indirect or consequential damages or lost profits even if
* IBM has been advised of the possibility of their occurrence. IBM
* will not be liable for any third party claims against you.
*/

import java.io.File;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;

import org.xml.sax.AttributeList;
import org.xml.sax.HandlerBase;
import org.xml.sax.Parser;
import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.helpers.ParserFactory;

import com.sun.xml.parser.Resolver;

/**
* saxTwo.java
* This sample program illustrates how to use a SAX parser. It
* parses a document and writes the document’s contents back to
* standard output. It is identical to saxOne.java except that
* it uses Sun’s XML parser instead of IBM’s.
*/

public class saxTwo
extends HandlerBase

{
public void parseURI(String uri)
{

try
{

Parser parser = ParserFactory.makeParser();
parser.setDocumentHandler(this);
parser.setErrorHandler(this);
parser.parse(Resolver.createInputSource(new File(uri)));

}
catch (Exception e)
{

System.err.println(e);
}

}

/** Processing instruction. */
public void processingInstruction(String target, String data)
{

System.out.print("<?");
System.out.print(target);
if (data != null && data.length() > 0)
{

Appendix – Listings of our samples Tutorial – XML Programming in Java

58

System.out.print(' ');
System.out.print(data);

}
System.out.print("?>");

}

/** Start document. */
public void startDocument()
{

System.out.println("<?xml version=\"1.0\"?>");
}

/** Start element. */
public void startElement(String name, AttributeList attrs)
{

System.out.print("<");
System.out.print(name);
if (attrs != null)
{

int len = attrs.getLength();
for (int i = 0; i < len; i++)
{

System.out.print(" ");
System.out.print(attrs.getName(i));
System.out.print("=\"");
System.out.print(attrs.getValue(i));
System.out.print("\"");

}
}
System.out.print(">");

}

/** Characters. */
public void characters(char ch[], int start, int length)
{

System.out.print(new String(ch, start, length));
}

/** Ignorable whitespace. */
public void ignorableWhitespace(char ch[], int start, int length)
{

characters(ch, start, length);
}

/** End element. */
public void endElement(String name)
{

System.out.print("</");
System.out.print(name);
System.out.print(">");

}

/** End document. */
public void endDocument()
{

// No need to do anything.
}

//
// ErrorHandler methods
//

Tutorial – XML Programming in Java Appendix – Listings of our samples

59

/** Warning. */
public void warning(SAXParseException ex)
{

System.err.println("[Warning] "+
getLocationString(ex)+": "+
ex.getMessage());

}

/** Error. */
public void error(SAXParseException ex)
{

System.err.println("[Error] "+
getLocationString(ex)+": "+
ex.getMessage());

}

/** Fatal error. */
public void fatalError(SAXParseException ex)

throws SAXException
{

System.err.println("[Fatal Error] "+
getLocationString(ex)+": "+
ex.getMessage());

throw ex;
}

/** Returns a string of the location. */
private String getLocationString(SAXParseException ex)
{

StringBuffer str = new StringBuffer();

String systemId = ex.getSystemId();
if (systemId != null)
{

int index = systemId.lastIndexOf('/');
if (index != -1)
systemId = systemId.substring(index + 1);

str.append(systemId);
}
str.append(':');
str.append(ex.getLineNumber());
str.append(':');
str.append(ex.getColumnNumber());

return str.toString();
}

/** Main program entry point. */
public static void main(String argv[])
{

if (argv.length == 0)
{

System.out.println("Usage: java saxTwo uri");
System.out.println(" where uri is the URI of your XML document.");
System.out.println(" Sample: java saxTwo sonnet.xml");
System.exit(1);

}

saxTwo s2 = new saxTwo();
s2.parseURI(argv[0]);

}
}

	Section 1 – Introduction
	About this tutorial
	What’s not here
	XML application architecture

	Section 2 – Parser basics
	The basics
	How to use a parser
	Kinds of parsers
	Validating versus non-validating parsers
	Why use a non-validating parser?
	The Document Object Model (DOM)
	What you get from a DOM parser
	A word about standards
	The Simple API for XML (SAX)
	What you get from a SAX parser
	Why use SAX? Why use DOM?
	XML parsers in different languages
	Resources – XML parsers
	One more thing
	Summary

	Section 3 – The Document Object Model (DOM)
	Dom, dom, dom, dom, dom…
	Sample code
	DOM interfaces
	Common DOM methods
	Our first DOM application!
	domOne to Watch Over Me
	Process the command line
	Create a domOne object
	Create a parser object
	Parse the XML document
	Process the DOM tree
	Nodes a-plenty
	Sample node listing
	All those text nodes
	Know your Nodes
	Summary

	Section 4 – The Simple API for XML (SAX)
	The Simple API for XML
	Sample code
	SAX events
	A wee listing of SAX events
	More SAX events
	A note about SAX interfaces
	Our first SAX application!
	saxOne overview
	SAX method signatures
	Process the command line
	Create a saxOne object
	Create a Parser object
	Parse the XML document
	Process SAX events
	A cavalcade of ignorable events
	Sample event listing
	SAX versus DOM – part one
	SAX versus DOM – part two
	Summary

	Section 5 – Advanced parser functions
	Overview
	Building a DOM tree from scratch
	Adding Nodes to our Document
	Establishing your document structure
	Finishing our DOM tree
	Using DOM objects to avoid parsing
	Parsing an XML string
	Sorting Nodes in a DOM tree
	Retrieving the text of our <line>s
	Sorting the text
	Useful DOM methods for tree manipulation
	One more thing about tree manipulation
	Using a different DOM parser
	Using a different SAX parser
	Summary
	Hope you enjoyed the show!
	For more information

	Appendix – Listings of our samples
	sonnet.xml
	sonnet.dtd
	domOne.java
	domCounter.java
	saxOne.java
	saxCounter.java
	domBuilder.java
	parseString.java
	domSorter.java
	domTwo.java
	saxTwo.java

